合并果子
提交数: 154, 通过率: 74.03%, 平均分: 80.19
题目描述:
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入格式:
包括两行,第一行是一个整数n(1 <= n <= 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。
输出格式:
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
样例输入:
样例1: 3 1 2 9 样例2: 10 3 5 1 7 6 4 2 5 4 1
样例输出:
样例1: 15 样例2: 120
提示:
对于30%的数据,保证有n <= 1000;
对于50%的数据,保证有n <= 5000;
对于全部的数据,保证有n <= 30000。
空间限制: 128MB
来源: NOIP2004提高T2