社交距离 II

提交数: 4, 通过率: 25%, 平均分: 30

题目描述:

由于高传染性的牛传染病 COWVID-19 的爆发,Farmer John 非常担忧他的奶牛们的健康。

尽管他尽了最大努力使他的 N 头奶牛们践行“社交距离”,还是有许多奶牛不幸染上了疾病。

编号为 1…N 的奶牛们分别位于一条长直道路上的不同位置(相当于一维数轴),奶牛 i 位于位置 xi。

Farmer John 知道存在一个半径 R,任何与一头被感染的奶牛距离不超过 R 单位的奶牛也会被感染(然后会传染给与其距离 R 单位内的奶牛,以此类推)。

不幸的是,Farmer John 并不确切知道 R 的值。

他只知道他的哪些奶牛被感染了。

给定这个数据,求出起初感染疾病的奶牛的最小数量。

输入格式:

输入的第一行包含 N。

以下 N 行每行用两个整数 x 和 s 描述一头奶牛,其中 x 为位置,s 为 0 表示健康的奶牛,1 表示染病的奶牛,并且所有可能因传播而染病的奶牛均已染病。

输出格式:

输出在疾病开始传播之前已经得病的奶牛的最小数量。

数据范围:

1 ≤ N ≤ 1000 ,
0 ≤ x ≤ 106

样例输入:

6
7 1
1 1
15 1
3 1
10 0
6 1

样例输出:

3

提示:

样例解释

在这个例子中,我们知道 R < 3,否则位于位置 7 的奶牛会传染给位于位置 10 的奶牛。

所以,至少 3 头奶牛初始时已被感染:位于位置 1 和 3 的两头奶牛中的一头,位于位置 6 和 7 的两头奶牛中的一头,以及位于位置 15 的奶牛。

时间限制: 1000ms
空间限制: 256MB

来源: USACO 2020 US Open Contest Bronze