Cave Paintings

提交数: 1, 通过率: 100%, 平均分: 100

题目描述:

Bessie 成为了一名艺术家,正在创作壁画!她现在正在创作的作品是一个高为 N 的方阵,方阵的每行都由 M 个方格组成(1≤N,M≤1000)。每个方格是空的,画了石头,或者画了水。Bessie 已经画上了包含石头的方格,包括整幅画作的边界。她现在想要将某些空的方格画上水,使得如果这幅画是真实的,其中应当不存在水的净移动。定义从上到下第 i 行的方格的高度为 N+1−i。Bessie 想要她的画作满足以下限制:

假设方格 a 画的是水。那么如果存在一条从 a 到方格 b 的路径,由高度不超过 a 的空的方格或是有水的方格组成,路径中每相邻两个方格都有一条公共边,那么 b 画的也是水。

求 Bessie 可以创作的不同作品的数量模 109+7 的余数。Bessie 可以将任意数量的空格画上水,包括不画以及全画。

测试点性质:

  • 测试点 1-5 满足 N,M≤10
  • 测试点 6-15 没有额外限制。

输入格式:

输入的第一行包含两个空格分隔的整数 N 和 M

以下 N 行每行包含 M 个字符。每个字符均为 '.' 或 '#',分别表示一个空的方格和一个画有石头的方格。第一行和最后一行、第一列和最后一列仅包含 '#'。

输出格式:

输出一个整数,为满足限制的作品的数量模 109+7 的余数。

样例输入:

4 9
#########
#...#...#
#.#...#.#
#########

样例输出:

9

提示:

如果第二行中的任意一个方格被画上水,那么所有空的方格必须都被画上水。否则,假设没有这样的方格画有水。那么 Bessie 可以选择画上第三行的空格组成的三个连续区域的任意子集。所以,画作的总数等于 1+23=9

时间限制: 1000ms
空间限制: 256MB

来源: USACO 2020 JAN Platinum