4.1.3 Fence Loops 篱笆回路
题目描述:
4.1.3 Fence Loops (fence6)
(fence6.pas/c/cpp)
农夫布朗的牧场上的篱笆已经失去控制了。它们分成了1~200英尺长的线段。只有在线段的端点处才能连接两个线段,有时给定的一个端点上会有两个以上的篱笆。结果篱笆形成了一张网分割了布朗的牧场。布朗想将牧场恢复原样,出于这个考虑,他首先得知道牧场上哪一块区域的周长最小。 布朗将他的每段篱笆从1到N进行了标号(N=线段的总数)。他知道每段篱笆有如下属性:
- 该段篱笆的长度
- 该段篱笆的一端所连接的另一段篱笆的标号
- 该段篱笆的另一端所连接的另一段篱笆的标号
幸运的是,没有篱笆连接它自身。对于一组有关篱笆如何分割牧场的数据,写一个程序来计算出所有分割出的区域中最小的周长。
例如,标号1~10的篱笆由下图的形式组成(下面的数字是篱笆的标号):
1 +---------------+ |\ /| 2| \7 / | | \ / | +---+ / |6 | 8 \ /10 | 3| \9 / | | \ / | +-------+-------+ 4 5
上图中周长最小的区域是由2,7,8号篱笆形成的。
PROGRAM NAME: fence6
INPUT FORMAT:
(file fence6.in)
第1行: N (1 <= N <= 100)
第2行到第3*N+1行: 每三行为一组,共N组信息:
每组信息的第1行有4个整数: s, 这段篱笆的标号(1 <= s <= N); Ls, 这段篱笆的长度 (1 <= Ls <= 255); N1s (1 <= N1s <= 8) 与本段篱笆的一端 所相邻的篱笆的数量; N2s与本段篱笆的另一端所相邻的篱笆的数量。 (1 <= N2s <= 8).
每组信息的的第2行有 N1s个整数, 分别描述与本段篱笆的一端所相邻的篱笆的标号。
每组信息的的第3行有N2s个整数, 分别描述与本段篱笆的另一端所相邻的篱笆的标号。
OUTPUT FORMAT:
(file fence6.out)
输出的内容为单独的一行,用一个整数来表示最小的周长。
SAMPLE INPUT
10 1 16 2 2 2 7 10 6 2 3 2 2 1 7 8 3 3 3 2 1 8 2 4 4 8 1 3 3 9 10 5 5 8 3 1 9 10 4 6 6 6 1 2 5 1 10 7 5 2 2 1 2 8 9 8 4 2 2 2 3 7 9 9 5 2 3 7 8 4 5 10 10 10 2 3 1 6 4 9 5
SAMPLE OUTPUT
12时间限制: 1000ms
空间限制: 128MB
来源: USACO4-高级算法