4.1.3 Fence Loops 篱笆回路

提交数: 9, 通过率: 88.89%, 平均分: 88.89

题目描述:

4.1.3 Fence Loops (fence6)

(fence6.pas/c/cpp)

农夫布朗的牧场上的篱笆已经失去控制了。它们分成了1~200英尺长的线段。只有在线段的端点处才能连接两个线段,有时给定的一个端点上会有两个以上的篱笆。结果篱笆形成了一张网分割了布朗的牧场。布朗想将牧场恢复原样,出于这个考虑,他首先得知道牧场上哪一块区域的周长最小。 布朗将他的每段篱笆从1到N进行了标号(N=线段的总数)。他知道每段篱笆有如下属性:

  • 该段篱笆的长度
  • 该段篱笆的一端所连接的另一段篱笆的标号
  • 该段篱笆的另一端所连接的另一段篱笆的标号

幸运的是,没有篱笆连接它自身。对于一组有关篱笆如何分割牧场的数据,写一个程序来计算出所有分割出的区域中最小的周长。

例如,标号1~10的篱笆由下图的形式组成(下面的数字是篱笆的标号):

         1
 +---------------+
 |\             /|
2| \7          / |
 |  \         /  |
 +---+       /   |6
 | 8  \     /10  |
3|     \9  /     |
 |      \ /      |
 +-------+-------+
     4       5

上图中周长最小的区域是由2,7,8号篱笆形成的。

 

PROGRAM NAME: fence6

INPUT FORMAT:

(file fence6.in)

第1行: N (1 <= N <= 100)

第2行到第3*N+1行: 每三行为一组,共N组信息:

每组信息的第1行有4个整数: s, 这段篱笆的标号(1 <= s <= N); Ls, 这段篱笆的长度 (1 <= Ls <= 255); N1s (1 <= N1s <= 8) 与本段篱笆的一端 所相邻的篱笆的数量; N2s与本段篱笆的另一端所相邻的篱笆的数量。 (1 <= N2s <= 8).

每组信息的的第2行有 N1s个整数, 分别描述与本段篱笆的一端所相邻的篱笆的标号。

每组信息的的第3行有N2s个整数, 分别描述与本段篱笆的另一端所相邻的篱笆的标号。

OUTPUT FORMAT:

(file fence6.out)

输出的内容为单独的一行,用一个整数来表示最小的周长。

SAMPLE INPUT

10
1 16 2 2
2 7
10 6
2 3 2 2
1 7
8 3
3 3 2 1
8 2
4
4 8 1 3
3
9 10 5
5 8 3 1
9 10 4
6
6 6 1 2 
5 
1 10
7 5 2 2 
1 2
8 9
8 4 2 2
2 3
7 9
9 5 2 3
7 8
4 5 10
10 10 2 3
1 6
4 9 5

SAMPLE OUTPUT

12
时间限制: 1000ms
空间限制: 128MB

来源: USACO4-高级算法