求一元二次方程的根

提交数: 2926, 通过率: 36.53%, 平均分: 55.73

题目描述:

利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。

 

输入格式:

输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。

 

输出格式:

输出一行,表示方程的解。
若b2 = 4 * a * c,则两个实根相等,则输出形式为:x1=x2=...。
若b2 > 4 * a * c,则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。
若b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2*a), 虚部 = sqrt(4*a*c-b*b) / (2*a)

所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。

 

样例输入:

样例输入1
1.0 2.0 8.0

样例输入2
1 0 1

样例输出:

样例输出1
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i

样例输出2
x1=0.00000+1.00000i;x2=0.00000-1.00000i

提示:

好好理解题目,其实题目不难哦,请多读几次题目,细节比较多。

时间限制: 1000ms
空间限制: 128MB

来源: openjudge